Oxford Microplasty Instrumentation

CSAO Conference 46th Annual
September 13th-15th, 2015
Oxford Microplasty Instrumentation
Proven, safe and reproducible results
Topics

• Instrumentation
 – Set Overview

• Surgical Technique
 – Key Steps
 • Highlighting Key Instruments
 • Improvements vs Phase 3 technique
Instrumentation
Instrumentation Overview

Phase 1
1976 - 1988
- Problems with balancing due to femoral prep
- A lot of eyeballing

Phase 2
1988 - 1998
- Introduction of milling
- Improving reproducibility

Phase 3
1998 - 2011
- Improving milling technique
- Continued focus on reproducibility

Microplasty
2011 – Present...
- Focus on reproducibility
Instrumentation: Set Overview

Tibia 1

Top Tray
- Tibial Templates and Trials
- Nails, drill bits, puller

Bottom Tray
- Tibial Impactor, Inserter
- Tibial Groove Cutters
- Slap Hammer
- T-Handle
- Bearing Inserter/Extractor
Instrumentation: Set Overview

Tibia 2

Top Tray
- Tibial Resection
- IM Link
- IM Rod Pusher

Bottom Tray
- IM Rods
- Anterior Mill
- Impactor
- Spigots
- Toffee Hammer
- Drills
- Bone Collar Remover
- 5mm Awl
Instrumentation: Set Overview
Size Specific

Specific for Femoral Size
• Femoral Trials
• Bearing Trials
• Femoral Drill Guide
• Femoral Resection Guide
• Anti-Impingement Guide
• Feeler Gauges
• Mill
Overview of Size Specific Trays

- XSM
- SM
- MD
- LG
- XLG
Surgical steps
Design Goal: Simple, Easy, Accurate, Reproducible

No change in indications

Enhancement in tibial resection instruments

IM linked femoral preparation

Anti-impingement instrumentation

Trial bearing inserts by hand
Indications/Contraindications

<table>
<thead>
<tr>
<th>Indications</th>
<th>Not Contraindication</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Antero-medial OA</td>
<td>• Patello-femoral Joint</td>
</tr>
<tr>
<td>• Intact ACL</td>
<td>• Obesity</td>
</tr>
<tr>
<td>• Full Thickness Lateral</td>
<td>• Age</td>
</tr>
<tr>
<td>• Correctable Varus</td>
<td>• Activity</td>
</tr>
<tr>
<td>• Fixed Flexion</td>
<td></td>
</tr>
<tr>
<td>Deformity (FFD) less than 15°</td>
<td></td>
</tr>
</tbody>
</table>

1 in 4 OA Knees!
Goals

• Minimize resection depth
• Maximize surface area
• Decrease re-cutting
 – Offers shims for recutting in +/- 2mm increments
• Appropriate slope
Tibial Preparation

- Tibial Slope
 - Parallel to tibial crest
 - 7 degrees

- New ankle positioning
 - Helps avoid overslope

- Pinned to tibia
 - Single nail suffices
Tibial Preparation

- Sizing spoon placed under posterior medial femoral condyle
- 1,2,3 mm spoons (1mm spoon is default)
- Ligament tension achieved
- Clamped to tibial guide with G-Clamp
Tibial Preparation

- Vertical cut important
- M/L position
 - Adjacent to ACL footprint
- Rotational position
 - ASIS/Flexion plane
- Depth
 - DON’T LIFT HAND
Tibial Preparation

- “Curly Whirly” inserted
 - Protect the MCL
- Flat cut
- Slotted guide available
- Shim option
 - Additional 2mm
Femoral Preparation

- IM rod cannulated
 - Flexion/extension
 - Varus / valgus
- Starting position critical
- Yellow pusher
- Mark central third
Femoral Preparation

- Femoral drill guide set
- Inserted and linked
- Position of link important
- Must be seated
- M/L position confirmed
Femoral Preparation

- “Flat arm” of link in IM hole
- Curved arm in femoral drill guide
- Foot of guide against tibial resection
 - In contact with femur
- Central third confirmed
- Correct hole, not femoral drill
 - Link out of way of drill hole
 - Places drill holes 10° flexed, and 7° valgus
Femoral Preparation

- New curved slotted posterior cutting guide
- Suitable for Oxford oscillating sawblade
- Allows blade to be flexed and for saw throw
- Goal: to prevent over/under resection
Femoral Preparation

- Milling
 - Curve off femur with 0 spigot
Gap Assessment

- Use single peg femoral trial to balance
- New tapered feeler gauges
- Less soft tissues interference
- Gaps determined
- Standard milling to balance
- 1,2,3 mm plastic feeler gauges
Anti-Impingement

- Decreases early and late complications
- Replaces traditional “Freehand technique”
- New instruments help guide bone removal
Anti-Impingement

- Anterior mill
- Size specific
- Similar to a calcar reamer
- Spring loaded plunger
- Extend the knee
- Care to watch tibia...
Final Trialing

- Insert tibial tray trial and single peg femoral trial
- Trial bearing inserted by hand
- Better “feel” of tension
- Assess tracking
- Check impingement
Trial Bearing Removal
Cementing the Components

• Cementing technique follows current Phase 3 Oxford Knee surgical technique

• Two staged
 1. Tibia
 • Small amount on tibia
 • Use tibial impactor
 • Compress at 45 deg with trial femur
 2. Femur
 • Cement into large hole
 • Concave surface of femoral component
 • Impact at 45 deg to the long axis
 • Compress at 45 deg with feeler gauge
Cementless

Differences vs Cemented
Keel Preparation

Use cementless tooth brush saw through tibial template

Cemented
Use cemented tibial groove cutter

Cementless
Option to use the cementless tibial groove cutter
Implant

- Use cementless tibial inserter
- Two insertion tabs on cementless tibia
- Bring in at an angle, and lightly tap home
Conclusion
Oxford Microplasty
Proven to deliver more accurate and reproducible results

- 219 Ph3 v 196 OXMP
- Concluded that OXMP delivered:
 - A more accurate alignment of the femoral implants
 - A more accurate alignment of the tibial implants
 - A more accurate resection, with a greater number of thinner 3mm and 4mm bearings

Oxford Microplasty
Proven to deliver more accurate and reproducible results
Support Materials

Currently available on myBiomet

- Cementless Microplasty surgical video
- Cemented Microplasty surgical video
- Printed and digital surgical technique for Cementless and Cemented Microplasty
- Cemented Microplasty surgical technique animation
- Phase 3 vs Microplasty instrumentation animation
Summary

- Oxford Microplasty Instruments enhance:
 - Tibial prep, resection depth (femoral size)
 - Femoral prep, component alignment precision
 - Impingement avoidance

- Oxford Microplasty Instruments are more accurate with less outliers than Phase 3 instrumentation
This publication and all content, artwork, photographs, names, logos and marks contained in it are protected by copyright, trademarks and other intellectual property rights owned by or licensed to Zimmer, Biomet or its affiliates, unless otherwise indicated. This publication must not be used, copied or reproduced in whole or in part for any purposes other than marketing by Zimmer, Biomet or its authorised representatives. Use for any other purposes is prohibited.

Zimmer and Biomet do not practice medicine and do not recommend any particular orthopaedic implant or surgical technique and is not responsible for use on a specific patient. The surgeon who performs any implant procedure is responsible for determining and utilizing the appropriate techniques for implanting prosthesis in each individual patient.